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Velocity fluctuations in a steadily sheared model foam
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Numerical simulations are conducted to calculate velocity fluctuations in a simple two-dimensional model of
foam under steady shear. The width of the velocity distribution increases sublinearly with the shear rate,
indicating that velocity fluctuations are large compared to the average flow at low shear rates~stick-slip flow!
and small compared to the average flow at large shear rates. Several quantities reveal a crossover in behavior

at a characteristic strain rateġx , given by the yield strain divided by the duration of a bubble rearrangement

event. For strain rates aboveġx , the velocity correlations decay exponentially in space and time, and the

velocity distribution is a Gaussian. For strain rates belowġx , the velocity correlations decay as stretched
exponentials in space and time, and the velocity distribution is broader than a Gaussian.

DOI: 10.1103/PhysRevE.67.061503 PACS number~s!: 83.80.Iz, 83.80.Hj, 83.80.Fg, 64.70.Pf
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I. INTRODUCTION

A foam or emulsion is a dispersion of easily deformab
bubbles of a gas or droplets of a liquid@1–4#. When packed
above the close-packing density, the bubbles or droplets
form away from the spherical shape and adjust their p
tions and shapes in order to minimize the total interfac
area. The resulting packing configuration lies in some lo
energy minimum. The typical energy barrier to rearran
bubble configurations is of the order ofS(gyR)2, whereS is
the interfacial tension,gy is the yield strain~of the order of a
few percent for three-dimensional foams@5# or emulsions
@6,7#!, andR is the typical bubble size. The thermal energy
roughly 105–107 times smaller than the characteristic ener
barrier height for typical bubble sizes~microns or larger!. As
a result, the bubbles cannot spontaneously rearrange an
plore the phase space in search of a global energy minim
When foam is sheared, however, enough energy is supp
to the system to overcome the energy barriers and bub
can rearrange. As a result, foam yields and flows unde
sufficiently high applied shear stress.

This paper is one of a series@8–12# that explore the ques
tion of how a simple two-dimensional model foam@8# yields
under steady shear flow. The behavior depends on the p
ing fraction of bubbles,f. Simulations on the quiescent sy
tem @13,8,9,14# show that there is a special packing fracti
f* near random close packing, above which the press
and shear modulus of the system are nonzero. Abovef*
'0.84 ~in two dimensions!, the system is therefore jamme
@15#; it has a nonzero yield stress in a disordered state. In
paper, we will concentrate on the regime abovef* . In this
regime, experiments on three-dimensional foams@5,16#, and
emulsions@6#, two-dimensional foams@17,18#, and numeri-
cal simulations of the model@8–12# show that the nature o
foam flow depends on the rate at which it is sheared. At v
low shear strain rates, the flow is characterized by localiz
intermittent rearrangement events that occur at a rate pro
tional to the strain rate. In these rearrangement events
bubbles move from one stable, disordered packing confi
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ration ~one local energy minimum! to another. Similar strain-
induced rearrangement events have been seen in Lenn
Jones mixtures at low temperatures@19#. At high shear strain
rates, on the other hand, the flow is smooth and laminar, w
all the bubbles continually rearranging. The crossover
tween the two regimes occurs at the shear rateġx'gy /td ,
wheregy is the yield strain andtd is the duration of a rear-
rangement event.

In this paper, we focus on fluctuations of the velocities
individual bubbles around the average velocity profile. W
study three main quantities: time correlations of veloc
fluctuations, spatial correlations of velocity fluctuations, a
the distribution of velocity fluctuations. We find a clea
crossover in the behavior of these quantities at the chara
istic strain rateġx . At shear rates higher thanġx , where the
flow is smooth, the velocity fluctuation distribution is Gaus
ian and the velocity correlations decay exponentially
space and time. Belowġx , where the flow is intermittent, the
distribution is broader than the Gaussian and the velo
correlations decay more slowly than exponentially in bo
space and time. This striking change in dynamical behav
with decreasing strain rateġ is apparently unaccompanied b
any diverging length scale and appears to be a signatur
the approach to jamming.

In Sec. II, we review the model, the numerical metho
used to solve it, and the quantities calculated. Sections
and IV contain our results. Section V is a discussion of
extent to which ideas from statistical mechanics can be
plied to the collective behavior of this driven, athermal sy
tems.

II. MODEL AND METHOD

A. Model

Our simulations are carried out on a two-dimensional v
sion of a model introduced by Durian@8,9#. The model and
the numerical method we have used is discussed elsew
@10#, so our description here will be brief. The foam is d
©2003 The American Physical Society03-1
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scribed entirely in terms of the bubble radii and the tim
dependent positions of the bubble centers. The details o
microscopic interactions at the level of soap films and ve
ces are subsumed into two pairwise additive interactions
tween bubbles, which arise when the distance betw
bubble centers is less than the sum of their radii. The firs
repulsion that originates at the cost of energy to dis
bubbles, is modeled by the compression of two springs
series with individual spring constants that scale with
Laplace pressuress/Ri , wheres is the liquid-gas surface
tension andRi is the radius of bubblei. Bubbles that do not
overlap are assumed not to interact. The second interacti
the viscous dissipation due to the flow of liquid in the film
It, too, is assumed to be pairwise additive and is modeled
a drag force proportional to the velocity difference betwe
overlapping bubbles. We simplify this further by using t
mean-field approximation, also employed by Durian@8–10#,
in which the drag force is proportional to the difference b
tween the velocity of a bubble and the average flow at
position of the bubble. In a previous study, we found that
mean-field approximation makes no difference to the sta
tics of rearrangement events@10#, despite the fact that the
mean-field version of the model is not Galilean invariant. W
note that the mean-field version is a better reflection of
physics of a two-dimensional monolayer foam experime
where shear is applied indirectly to the monolayer by she
ing the water subphase. Such experiments have been ca
out by Dennin and co-workers@17,18#.

We study a two-dimensional foam periodic in thex direc-
tion and trapped between parallel plates in they direction.
Bubbles that touch the top and bottom plates are fixed
them, and the top plate is moved at a constant velocity in
x direction. Thus, bubbles are divided into two categories
‘‘boundary’’ bubbles, which have velocities that are det
mined by the motion of the plates, and ‘‘interior’’ bubble
whose velocities must be determined from the equation
motion. We have checked our results by using perio
boundary conditions, with Lees-Edwards boundary con
tions for steady-state shear, and have found that the diffe
boundary conditions lead to only small quantitative diffe
ences. We use theSPARSKIT2 @20# library for sparse matrix
solutions and the Runge-Kutta algorithm with a variable ti
step determined by the error tolerance to integrate
coupled differential equations of motion.

To introduce polydispersity, the bubble radii are drawn
random from a flat distribution of variable width; in all th
results reported here, the bubble radii vary from 0.6 to
times the average bubble radius. The shape of the bubble
distribution appears to have no effect on viscoelasticity@9# or
the statistics of rearrangement events@10# as long as it is
sufficiently broad. Note that it is important to include pol
dispersity because a monodisperse system will crystallize
der shear, especially in two dimensions.

In all our runs, the system is first equilibrated with a
bubbles treated as interior bubbles, and with a repulsive
teraction between the bubbles and the top and bottom p
so that the bubbles cannot penetrate the plates. The bub
that touch the top and bottom plates are then converte
boundary bubbles.
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B. Units

We will use dimensionless quantities throughout. Thusr
represents the distance in units of the average bubble d
eter d and t represents the time in units of a characteris
time scale in the model,td , set by the spring constant an
the friction coefficient. This is the characteristic relaxati
time arising from the competing mechanisms for elastic s
age and viscous dissipation, and it measures the duration

rearrangement event. Similarly,ġ represents the shear ra

multiplied bytd . Thus,ġ is the Deborah number or, equiva
lently for this system, the capillary number. Energies a
measured in units ofSd2, whereS is the interfacial tension.

C. Quantities calculated

When the system is under steady shear with the velo
in thex direction and the velocity gradient in they direction,

the average velocity profile is linear:^v(y)&5ġyx̂, wherey
ranges from zero at the bottom plate toL at the top plate.
Note that we have imposed a linear profile by adopting
mean-field approximation, where the drag force is prop
tional to the deviation of the bubble velocity from the line
shear profile. However, in earlier work we showed that
average velocity profile is linear even if the mean-field a
proximation is not adopted and shear is imposed by
boundary@10#. Most experiments on sheared foam have a
observed an average velocity profile that is line
@5,6,17,16,18,21#, but one experiment has observed she
banding@22#. It is possible that shear banding was observ
in the latter experiment due to the nonuniform stress in th
radial Couette geometry, but further experiments should
done to resolve this question.

Our main focus is on the fluctuations around the aver
linear profile. To eliminate initial transients, we measure
average velocity profile. Once the measured profile is wit
5% of the expected linear profile, we begin to collect da
We measure fluctuations of individual bubble velociti
around the average profile. Thus, we defineDv(r ,t)
[vi(r ,t)2ġyi(r ,t) x̂, wherevi(r ,t) and yi(r ,t) are the ve-
locity and height, respectively, of bubblei centered at posi-
tion r at time t. We concentrate on three quantities:~1! the
autocorrelation function̂Dv(t)•Dv(0)&; ~2! the equal-time
spatial correlation function̂Dv(r )•Dv(0)&; and~3! the dis-
tribution P(Dv).

The Durian model contains two key features that allow
to display nontrivial velocity correlations. First, it is not a
equilibrium system; it is in steady state. Second, the bub
packings are disordered.

For an equilibrium thermal system with a Hamiltonia
the velocity autocorrelation function is nontrivial, but th
spatial correlation function always satisfies^Dv(r )•Dv(0)&
5d(r ), whered(r ) is the Dirac-delta function. The velocity
of bubble i is always completely uncorrelated with the v
locity of bubble j, unless i 5 j , because of the separatio
between position and momentum degrees of freedom in
Hamiltonian. In addition, the velocity distribution is alway
Gaussian~the Maxwell-Boltzmann distribution!.
3-2
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It is important that we are studying disordered bub
packings. In a periodic packing, the energy increases w
the system distorts affinely, and the energy drops when
the bubbles rearrange simultaneously. In a disordered fo
however, the deformation is nonaffine and some bubb
shift their relative positions to avoid distorting. This als
allows nontrivial velocity distributions and correlations.

We study fairly small systems, typically 64, 225, or 62
bubbles. To obtain adequate statistics, averages~indicated by
anglular brackets! are taken over configurations as well
over time. For the velocity distributionsP(Dv), each distri-
bution is collected over 1000–10 000 time steps, coverin
total strain of at least 10, for at least nine different init
configurations. For the correlation functions at strain ra
below ġx , we average over at least 10 000 time steps co
ing a total strain of 10 for ten different initial configuration
At or aboveġx , however, we average over at least 5000 ti
steps covering a total strain of 10 for only five differe
initial configurations because very little variation with co
figuration is found. Error bars are based on variations am
runs with different initial configurations as well as fluctu
tions within each run.

The magnitude of the correlation functions atr50 or at
t50 is the mean-squared velocity fluctuation^(Dv)2&. This
varies by several orders of magnitude over the range of s
rates studied. In plotting our results, it is convenient to sc
the correlation functions bŷ(Dv)2& so that we can show
results for several different shear rates at once. Accordin
we define the scaled correlation functions

F~r !5^Dv~r !•Dv~0!&/^~Dv !2&,

C~ t !5^Dv~ t !•Dv~0!&/^~Dv !2&. ~1!

In addition to studying velocity correlation functions, w
also examine several velocity fluctuation distributions. W
have separated thex andy components to obtainP(Dvx) and
P(Dvy) separately. We will show below thatP(Dvx) and
P(Dvy) are very similar. However, the calculation ofDvx
requires subtraction of the average shear profile, which in
duces some error, so we focus onP(Dvy). We also compute
two other distributionsPup(Dvy) andPdn(Dvy). In Durian’s
model, the distortion of bubbles is measured globally by
total elastic energy stored in all the springs connecting ov
lapping bubbles. The distributionsPup(Dvy) and Pdn(Dvy)
contain velocity fluctuations that occur when the elastic
ergy is increasing and decreasing, respectively. The ratio
for separating the two distributions is based on a specula
on the nature of bubble motion under shear. Suppose
begin with a system in a local energy minimum. Under
small applied shear strain, the bubbles will distort. As
shear strain increases, the packing configuration eventu
becomes unstable and bubbles rearrange their relative
tions. Figure 1~a! shows a plot of the total elastic energy as
function of strain for a system driven at a constant shear
of ġ51025. Similar plots for stress vs strain are shown
Refs. @8,10#. Under steady shear, the elastic energy rises
bubbles distort~overlap! and then drops as bubbles rea
range. Figure 1~b! shows that the average slope of an ene
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drop dEdn decreases relative to the average slope of an
ergy risedEup as the shear rateġ increases. Conversely, th
average duration of an energy dropdtdn increases relative to
the average duration of an energy risedtup as the shear rate
increases. The straight lines are fits to the power la
dEdn /dEup50.14ġ20.4 anddtdn /dtup57.9ġ0.4. Thus, in the
limit of vanishing shear rate, energy drops~bubble rearrange-
ments! occur infinitely rapidly relative to the energy rise
~bubble distortions!.

By sorting the velocity fluctuations into two distribution
depending on whether the energy is rising or dropping,
can examine separately the bubble motion during distor
and rearrangement events. Note that the separation is
entirely clean because we compute only thetotal elastic en-
ergy of the system; because events can be localized an
termittent, the elastic energy may drop in one region of

FIG. 1. ~a! Total potential energy as a function of strain for
225-bubble system at area fractionf50.9 driven at a constan

shear rate ofġ51025. Note that the elastic energy increases grad
ally as bubbles increase the amount of overlap~deform!, and de-
creases precipitously due to intermittent bubble rearrangem
events.~b! Characteristics of energy drops relative to energy rises
a function of shear rate. Solid circles: the average time derivativ
an energy drop relative to the average time derivative of an ene
rise. The solid line is a fit to a power law with exponent20.4.
Open circles: the average duration of an energy drop relative to
average duration of an energy rise. The dashed line is a fit
power law with exponent 0.4. This shows that a negligible fract
of time is spent on energy drops~bubble rearrangements! in the zero
shear rate limit.
3-3
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sample and rise in other regions. However, large rearran
ment events involving large drops of energy should still
isolated inPdn . Moreover, since a vanishing fraction of tim
is spent on energy drops in the zero shear rate limit, the t
velocity fluctuation distribution approachesPup in that limit.

III. RESULTS: VELOCITY CORRELATION FUNCTIONS

In defining the correlation functionsC(t) andF(r ) in Eq.
~1!, we have scaled the actual correlation functions by th
zero-time or zero-separation values^(Dv)2&. This quantity
has a strong shear rate dependence. In Fig. 2, we plo
standard deviationdv[A^(Dvy)

2& ~similar results are ob-
tained for velocity fluctuations in thex direction!. The
straight line is a fit to a power law with exponent 0.6; th
provides an adequate fit, but note that there is a system
upwards curvature in the data on this log-log plot, sugges
a more complex dependence on shear rate. Recent ex
ments on driven granular materials observe similar pow
law scaling of velocity fluctuations@23–26#. This scaling is
interesting because it implies that fluctuations diverge re
tive to the average flow in the limit of zero average flo
We will discuss the significance of this scaling in detail
Sec. V C.

In an equilibrium systemdv2[T/m, where the Boltz-
mann constant is unity,T is the temperature, andm is the
particle mass. It is tempting to associate an effective te
perature withdv based on this relation. However, there is
inertia in our system so the massm is undefined. In previous
papers, we have calculated an effective temperatureTeff
based on linear response relations@11,12#. If we comparedv
to Teff , we find that they have very different shear rate d
pendences. Figure 2 shows thatdv decreases with decreasin
ġ and appears to vanish asġ→0. In contrast, we find tha
Teff appears to level off to a constant value at lowġ @11,12#.
If we associatedv with a temperature, this would imply tha
the effective massm of the bubbles must diverge in the lim
ġ→0. This is probably not a sensible interpretation of t
results. It is more reasonable to conclude that since the

FIG. 2. Standard deviation of they-velocity distribution as a
function of shear rate. The width of the distribution narrows w
decreasing shear rate. The line is a fit to a power law with expon
0.6.
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no kinetic energy in our system, we cannot extract an eff
tive temperature from velocity fluctuations.

A. Shape of correlation functions

Several correlation functions are shown in Fig. 3 for 22
bubble systems atf50.9 at several different strain rates.
Figs. 3~a! and 3~b!, we plot the scaled velocity autocorrela
tion function C(t) and the scaled velocity correlation func
tion F(r ), defined in Eq.~1!. In Fig. 3~c!, we plot the pair
correlation functiong(r ).

In an equilibrium liquid,C(t) is nonmonotonic and dips
below zero@27#. The dip is attributable to short-ranged r

nt

FIG. 3. Correlation functions.~a! The velocity autocorrelation
function C(t) @Eq. ~1!#; ~b! the velocity correlation functionF(r ),
Eq. ~1!; ~c! the radial distribution functiong(r ). In all three plots,
the correlation functions are shown for several different shear ra
as marked. The curves in plots~a! and~b! represent fits of the tails
to Eqs.~2! and ~4!, respectively.
3-4
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pulsive interactions that push particles away from each ot
The functionF(r ), on the other hand, is identically zero
an equilibrium system since the velocities of different p
ticles are uncorrelated. Finally, the pair correlation funct
g(r ) in an equilibrium system is very similar to the one w
calculate for the sheared system.

In examining Fig. 3, first note thatg(r ) is nearly indepen-
dent of ġ, while C(t) andF(r ) are much more sensitive t
ġ. Thus, there is no noticeable change in structure, but th
is a significant change in the dynamics with decreasing sh
rate.

The velocity autocorrelation functionC(t) does not al-
ways decay monotonically with time at all shear rates,
shown in Fig. 3~a!. We find thatC(t) dips below zero at high
shear rates,ġ>0.05. At high shear rates, the behavior of t
foam is liquidlike, with all the bubbles rearranging all th
time. The repulsive spring interactions between bubb
should lead to dips in the velocity fluctuation autocorrelat
function in this regime since the packing fraction is hi
(f50.9 in Fig. 3!. In other words, a bubble will revers
direction relative to the average shear when it approach
neighboring bubble too closely. This picture is supported
the behavior of spatial correlations in the velocity. The sca
correlation functionF(r ) is nonmonotonic and can even b
negative forġ>0.05. At ġ50.1, the first dip inF(r ) occurs
in the first neighbor peak ofg(r ). Thus, neighboring bubble
tend to move in opposite directions, as expected due to
repulsive interactions.

It is more surprising that there isnot a dip in C(t) at
lower shear rates@see Fig. 3~a!#, since the packing fraction is
still high and the repulsive interactions between bubbles
even stronger relative to viscous interactions at low sh
strain rates. Some insight can be gained by studying the
tial correlation functionF(r ), shown in Fig. 3~b!. At lower
shear rates,F(r ) is positive at all r. Thus, neighboring
bubbles tend to move in the same direction at lower sh
rates. This is in marked contrast to the velocity autocorre
tion function for an equilibrium liquid, which is always non
monotonic because the kinetic energy of particles lead
collisions. This correlation in the motion of nearby bubbl
implies that a bubble does not have to reverse direction w
it travels a distance comparable to the interbubble spac
Thus, it is possible forC(t) to decay monotonically.

The curves shown in Fig. 3~a! represent fits ofC(t) to the
function,

C~ t !5exp@2~ t/t1!b t#, ~2!

where t1 and b t are fitting parameters. This function ev
dently provides a reasonable fit as long as the correla
function is always positive, and it gives a fairly good fit
the envelope when the correlation function dips below ze
The fitting parameters are shown in Fig. 4~a!. The exponent
b t ~circles! starts at unity at high shear rates, and cros
over to 0.6 at low shear rates. Meanwhile, the parametet1
~triangles! increases by one order of magnitude with decre
ing shear rate, and levels off at aroundġ50.001.

An alternate fitting function provides fits that are indisti
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guishable from those provided by Eq. 2 in Fig. 3~a!. This
form is a linear combination of an exponential and
stretched exponential:

C~ t !5a texp@2t/t2#1~12a t!exp@2At/t2#, ~3!

wherea t andt2 are fitting parameters. The results fora t are
shown as circles in Fig. 4~b!. Evidently, C(t) is a pure ex-
ponential at shear rates aboveġ'0.01, and crosses over t
nonexponential behavior at low shear rates. The behavio
t2 ~triangles! from this fit is very similar to the behavior fo
the fit to Eq.~2!. Note that the fitting parameterst1 andt2
are not a very good measure of the relaxation time since
form of the fit changes with shear rate. We therefore defi
the relaxation timete as the time in whichC(t) decays to
1/e2. This definition is arbitrary; we have avoided the mo

FIG. 4. Fitting parameters for the velocity autocorrelation fun
tion C(t) as a function of shear rate.~a! Fitting parameters to Eq
~2!, whereb t ~circles! is the stretching exponent andt1 ~triangles!
is the relaxation time.~b! Fitting parameters to Eq.~3!, wherea t

~circles! is the coefficient of the exponential term andt2 ~triangles!
is the relaxation time.~c! The timete over whichC(t) decays to

1/e2. This increases with decreasing shear rate, but saturatesġ
'1023.
3-5
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standard choice of the decay to 1/e because it is important to
include the difference between exponential and stretch
exponential decay. The time scalete is plotted in Fig. 4~c!.
The behavior ofte is qualitatively similar to that oft1 and
t2, butte increases by a larger factor over the range of sh
rates studied.

From these fits in Fig. 4, we conclude that the autoco
lation function has several distinct regimes:~1! At high shear
rates (ġ>0.05), C(t) dips below zero; this is similar to th
behavior in an equilibrium liquid.~2! At intermediate shea
rates (0.01<ġ,0.1), C(t) decays exponentially with a de
cay time that increases with decreasing shear rate.~3! At
lower shear rates (0.001,ġ,0.01), C(t) crosses over to a
broader-than-exponential decay and the decay time conti
to increase.~4! At low shear rates (ġ,0.001), the scaled
correlation functionC(t) appears to become independent
shear rate.~Note that the velocity autocorrelation functio
itself, ^(Dv)2&C(t), still depends on shear rate because
amplitude^(Dv)2& depends onġ, as shown in Fig. 2.! We
suspect that the reason whyC(t) appears to saturate at lowġ
is that it is dominated~particularly at short times! by the
dynamics during rearrangement events. Asġ decreases, re
arrangement events occur less frequently. Since bubbles
hardly move when they are not rearranged, the contribu
to the velocity autocorrelation is very small, except duri
rearrangement events. Therefore, the amplitude of the ve
ity autocorrelation function decreases. Since the main con
bution to the autocorrelation function still comes from re
rangement events, the shape ofC(t) remains the same a
short times. At longer time scales, however, there should
tail. We know that other autocorrelation functions, such
the stress autocorrelation function, decay more and m
slowly asġ decreases, with a time scaleta'1/ġ. This time
scale also sets the magnitude of the viscosity. The velo
autocorrelation function should also reflect this slow rela
ation time. Even in simulations of equilibrium liquids@27#,
this time scale is difficult to resolve because short-time f
tures dominate the velocity autocorrelation function. We s
mise that we do not observe the tail because the amplitud
similarly small in the sheared foam.

Similar behavior is observed in the spatial correlati
functionF(r ). The curves shown in Fig. 3~b! are fits ofF(r )
to the function

F~r !5exp@2~r /j1!br#, ~4!

wherej1 andb r are fitting parameters shown in Fig. 5~a!. At
high shear rates, the exponentb r is unity, as shown by the
circles in Fig. 5~a!. Between ġ'0.02 and ġ'0.001, b r
drops to roughly 0.5. Meanwhile, the correlation lengthj1
~triangles! increases slightly, but is essentially fixed arou
the bubble diameter at all shear rates.

We have also used an alternate fitting form forF(r ):

F~r !5a rexp@2r /j2#1~12a r !exp@2Ar /j2#, ~5!

wherea r andj2 are fitting parameters. The quality of the fi
is indistinguishable from those for Eq.~4!. The resulting val-
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ues ofa r andj2 are shown as circles and triangles, resp
tively, in Fig. 5~b!. The agreement between the results fro
the two fits, Eqs.~4! and~5!, confirms that the spatial corre
lation function decays as an exponential at high shear ra
and as a stretched exponential at low shear rates, but tha
correlation length remains short at all shear rates. We h
also plottedje , the distance at whichF(r ) decays to 1/e2, in
Fig. 5~c!. Note thatje increases by only about a factor of
over four decades of shear rate, and is comparable to
average bubble diameter.

Why do we observe exponential decay ofC(t) andF(r )
at high shear rates and stretched exponential decay ofC(t)
andF(r ) at low shear rates? In viewing movies of our sim
lations, we have observed that the rearrangement event
discrete and localized at low shear rates, but are continu
at high shear rates. The size of rearrangement events tha

FIG. 5. Fitting parameters for the velocity correlation functio
F(r ) as a function of shear rate.~a! Fitting parameters to Eq.~4!,
whereb r ~circles! is the stretching exponent andj1 ~triangles! is
the correlation length.~b! Fitting parameters to Eq.~5!, wherea r

~circles! is the coefficient of the exponential term andj2 ~triangles!
is the correlation length.~c! The distanceje over whichF(r ) de-
cays to 1/e2.
3-6
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VELOCITY FLUCTUATIONS IN A STEADILY SHEARED . . . PHYSICAL REVIEW E67, 061503 ~2003!
observe is consistent withje , namely, of the order of a
bubble diameter@10#. Similar results are seen in experimen
on three-dimensional foams@5# and two-dimensional foam
@17#. At low shear rates, when the flow is intermittent, the
are, therefore, pronounced kinetic heterogeneities in the
tem. We believe that this gives rise to the stretch
exponential decay ofC(t) andF(r ), in much the same way
as kinetic heterogeneities give rise to stretched-expone
decays of correlations in glassforming liquids.

1. System-size dependence

We have calculated the velocity correlations for three d
ferent system sizes:N564, N5225, andN5625 bubbles,
all at an area fractionf50.9. The quantitieste and je are
plotted as a function ofN in Figs. 6~a! and 6~b! for two
different shear ratesġ50.01 andġ51024. We find thatte
andje are independent of the system size at the higher s
rate ġ50.01. At ġ51024, however,te decreases andje
increases with the system size. ForN564, there is a pro-
nounced difference in the correlation functions, but bothte
andje appear to approach saturation for the two largest s
tem sizes; their values forN5225 and N5625 overlap
within the error bars.

Why do system-size effects appear at low shear rates
not at high shear rates? At high shear rates, the correlat

FIG. 6. System-size dependence.~a! The relaxation timete ,
over which the velocity autocorrelation functionC(t) decays to

1/e2, at two different shear rates. Atġ51024 ~circles!, te decreases

with increasing system size. Atġ51022 ~triangles!, te is indepen-
dent ofN. ~b! The correlation lengthje , over whichF(r ) decays to

1/e2, at two different shear rates. Atġ51024 ~circles!, je increases

with increasingN, but atġ51022, je is independent ofN.
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are short ranged and decay exponentially. On the scale o
system-size, there are no long-ranged correlations and th
fore there are no system-size effects. At low shear ra
however, the correlations decay as a stretched expone
due to kinetic heterogeneities. Atġ51024, we note that
F(r ) has not decayed to zero on the scale of the system
in Fig. 3~b!. In order to obtain a good average over the
netic heterogeneities, one must study the system on le
scales large as compared to the size of the heterogene
(je). Therefore, there are slight differences between the 2
particle and 625-particle systems.

2. Area fraction dependence

Earlier studies@13,8–10,14#, have suggested that there
a special point near random close packing (f* '0.84) and
zero shear rate that has some properties reminiscent
critical point ~and others that are definitely unusual for
critical point @14#!. At close packing, the pressure and she
modulus vanish as power laws@13,8,14#, the stress relaxation
time becomes very large@8#, and the distribution of ava-
lanche sizes appears to approach a pure power law@10#.
Here, we examine the dependence of the correlation fu
tions on area fraction. The correlation time and distancete
and je , are shown in Figs. 7~a! and 7~b! for two different
shear ratesġ50.01 andġ51024. Evidently, the correlation

FIG. 7. Area fraction dependence.~a! The relaxation timete as

a function off at two different shear rates. Atġ51024 ~circles!, te

increases asf decreases towards close packing. Atġ51022 ~tri-
angles!, te is independent off. ~b! The correlation lengthje is

independent off at both ġ51024 ~circles! and ġ51022 ~tri-

angles!. For ġ51022, error bars are omitted because they a
smaller than the symbols.
3-7
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time te increases in the double limitġ→0 and f→f* ,
consistent with previous conclusions@8#. However, the cor-
relation lengthje has no noticeable dependence onf. Thus,
je does not diverge asf→f* .

B. Transverse diffusion coefficient

As a check on our results for the velocity autocorrelat
function, we have calculated the self-diffusion coefficient
the transverse~y! direction ~i.e., perpendicularto the shear
direction! in two different ways. First, we obtain it by inte
grating the velocity autocorrelation function over time. Se
ond, we calculate the distribution of particle displacement
the y direction, H(y,t,yi), and fit the results to the one
dimensional diffusion equation with reflecting boundarie
Here,H(y,t,yi) is the probability of finding the particle aty
at a timet after the particle was atyi .

A typical result for the y-displacement distributions
H(y,t,yi50.25L), whereL is the spacing between bound
aries in they direction, at two different time intervals at
shear rate ofġ50.05 is shown in Fig. 8~a!. The curves
through the data are fits to the solution of the on

FIG. 8. ~a! Distribution H(y,t,yi) of y coordinates of bubble
positions at timest5100 ~solid! and t5300 ~dotted!, given an ini-
tial position of yi50.25L. The curves are fits to the one
dimensional diffusion equation with the same diffusion coefficie
at both times.~b! Mean-squared displacements in they direction for
initial y positions ofyi50.25L ~circles!, yi50.5L ~squares!, and
yi50.75L ~triangles!. The curves are fit to the one-dimensional d
fusion equation with the same diffusion coefficient as in~a! for all
times and allyi .
06150
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dimensional diffusion equation with reflecting boundarie
Both fits yield the same diffusion coefficient. We have al
plotted the mean-squared displacement^(y(t)2yi)

2& as a
function of time in Fig. 8~b! for three starting values foryi ,
namely, 0.25L, 0.5L, and 0.75L. By symmetry, the results
for yi50.25L andyi50.75L must be the same, on an ave
age, so this serves as a check on our statistics. The curve
fits to the data to the one-dimensional diffusion equat
with a single fit parameter, namely, the diffusion coefficie
Dy for all times and allyi . The agreement between the sim
lation data and the curves shows that bubble motion in
transverse direction is diffusive.

We have also calculated the diffusion coefficient by in
grating the velocity autocorrelation function according to t
equation

D5E
0

`

^vy~ t !vy~0!&dt. ~6!

In Fig. 9, we plot the diffusion coefficient obtained by int
grating the velocity autocorrelation function over time~solid
triangles! as well as the diffusion coefficient obtained b
fitting displacement distributions~open circles! for several
different shear rates. The two results are in excellent ag
ment, as they ought to be.

Figure 9 shows that the diffusion coefficient decrea
with decreasingġ. This is similar to the behavior of the
diffusion coefficient for a particle in an equilibrium liquid
which decreases with decreasing temperature. However
velocity autocorrelation function, whose integral over tim
yields D, appears to be very different in the two cases.
liquids, D decreases precipitously with decreasing tempe
ture because the positive and negative portions ofC(t) come
closer to canceling each other, while the zero-time value
the correlation function̂Dv2& decreases linearly withT as
2kT/m. In the sheared foam, in contrast, the diffusion co
ficient decreases with decreasing shear rate because the
time value of the correlation function̂Dv2& decreases, while

t

FIG. 9. Diffusion coefficient obtained from displacement dist
butions ~open circles! and by integrating the velocity autocorrela
tion function over time~solid triangles! as a function of shear rate
The two results are the same, as expected. Note that the diffu
coefficient cannot be described as a pure power law in shear r
3-8
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VELOCITY FLUCTUATIONS IN A STEADILY SHEARED . . . PHYSICAL REVIEW E67, 061503 ~2003!
C(t) is always positive~see Fig. 3!. As discussed earlier, in
dense liquids,C(t) typically crosses over to a negative valu
on the collision time scale because the particles have kin
energy.

At high shear rates, aroundġ'1, the displacement distri
bution does not appear to be diffusive~it cannot be fit by the
solution to the one-dimensional diffusion equation with
flecting boundaries!. A typical result for the displacemen
distribution in this regime is shown in Fig. 10. This figure
based on 20 000 different trajectories. Each trajectory be
at y050.25L and ends at some heighty after a time interval
of 25. Figure 10 is a histogram of the finaly values. When
we view movies of the simulations in this regime, we o
serve that the bubbles organize into strings that move in
x̂ direction. Similar strings have been observed in simu
tions of colloids under shear and are believed to be a sys
size effect@28#. In our case, we find that the observed beh
ior depends on the boundary conditions; if we use perio
boundaries in they direction instead of fixed boundaries, w
find that strings do not form atġ51 and that the displace
ment distribution remains diffusive. Thus, the strings we o
serve appear to be finite system-size artifacts.

IV. RESULTS: VELOCITY DISTRIBUTION

In an equilibrium Hamiltonian system, the velocity distr
bution of particles is Gaussian with a width that depends
the temperature and the particle mass. In our driven diss
tive system, there is no particle mass because we neg
inertia, and there are no thermal fluctuations. However, th
are fluctuations that arise when the sheared bubbles jo
each other. The resulting distribution for they component of
the velocity~transverse to the shear! is shown in Fig. 11 for
a 625-bubble system atf50.9. The distributionsPup(Dvy)
andPdn(Dvy) ~i.e., the distributions ofy velocities incurred
when the total elastic energy is increasing and decreas
respectively; see Sec. II! appear qualitatively similar to the

FIG. 10. Distribution ofy coordinates of bubble positions a
time t525, given an initial position ofyi50.25L, at high shear rate

(ġ51). The two peaks flanking the central peak show that
bubbles tend to get trapped in they direction and do not simply
diffuse; this is an evidence that the bubbles are organized
strings at high shear rate.
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total distribution. In all cases, we calculate the distribution
the absolute value of the velocity because the distributi
are symmetric inDvy . All three distributions show a quali
tatively similar behavior; asġ decreases, the distribution
become narrow. Above the crossover shear rateġx'0.02,
the functional form of the distribution does not appear
depend on shear rate, but the width of the distribution
creases with decreasingġ. Below ġx , the width of the dis-
tribution continues to decrease with decreasingġ, but the
distribution develops a progressively larger tail at high v
locities. The dependence of the width of the distribution,dv,
on shear rate was shown earlier in Fig. 2.

A. System-size dependence

Our results forPup(Dvy) are independent of system siz
for the two sizes we have studied, namely,N5225 bubbles
and N5625 bubbles, at an area fraction off50.9. This is
illustrated in Fig. 12, which shows the distributionPup(Dvy)
for N5225 ~symbols! and N5625 ~lines! at three different
shear rates, ranging from high to low. The slight difference
ġ51025 is probably due to the fact that we have better s
tistics for the larger system.

B. Area fraction dependence

We have studied four different area fractions abo
the close-packing value of fc'0.84, namely, f
50.85,0.90,0.95,1.0. In these runs, the dimensions of
system were held fixed and the number of bubbles varie
change the packing fraction; atf51.0, the system contain
N5250 bubbles. The distributionPup(Dvy) at a low shear
rateġ51025 is shown for these different values off in Fig.
13~a!. Interestingly, we find that for the three highest ar
fractions, the shape of the distribution is roughly the sam
but for f50.85, the area fraction closest tofc , the distri-
bution has a noticeably different shape and is significan
narrower. This implies that the distribution is sensitive to t

e

to

FIG. 11. Distribution of they component of bubble velocities a
a function of shear rate. The units for velocity in this plot corr

spond toL/td . Note that at high shear rates (ġ>0.02), the distri-

bution narrows with decreasingġ, but does not change shape. F

ġ,0.02, the distribution develops a tail at high velocities.
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area fraction forf close tofc , but is relatively insensitive
to f at values far abovefc . It is not surprising that the
distribution is narrower nearfc ; the velocity fluctuations are
driven by the repulsive interactions between bubbles, wh

FIG. 12. The distributionPup(Dvy), namely, the distribution of
y velocities when the total energy increases as a function of sys
size. The area fraction is fixed atf50.9. The symbols correspon
to N5225 and the curves toN5625. At each shear rate, there is n
significant difference between the results for the two different s
tem sizes. Error bars are not shown if they are smaller than
symbol.

FIG. 13. Velocity distributionPup(Dvy) as a function of area

fraction f. ~a! At a low shear rateġ51025, the distribution is
independent off for f>0.90, but is slightly narrower near clos

packing atf50.85. ~b! At a high shear rate ofġ51.0, the distri-
bution widens slightly with decreasingf.
06150
h

get weaker asf decreases because the bubbles are
tightly packed.

At high shear rates, we find that the width of the distrib
tion increases slightly but systematically with decreas
area fraction, as shown in Fig. 13~b! for the distribution

Pup(Dvy) at ġ51.0. This is the opposite of the trend ob
served at low shear rates. At these high shear rates, vis
dissipation is much more important than the repulsive int
actions between particles. As we saw from the displacem
distribution in Fig. 10, particles tend to organize into strin
along the shear direction that are held in place by the re
sive interactions; at high shear rates, repulsions there
tend to suppress velocity fluctuations in they direction. We
surmise that due to this reason the distribution grows broa
as the area fraction~and, correspondingly, the strength
repulsive interactions! decreases towardsfc .

C. Shear rate dependence

The shape of the distribution changes markedly with sh
rate. In Fig. 14, we have replottedP(Dvy) as a function of
Dvy on a semilog plot. Here, we have scaledDvy by the
standard deviation of the distribution,dv, shown earlier in
Fig. 2. At high shear rates, the distribution does look a
proximately Gaussian~a Gaussian distribution is plotted fo
comparison in heavy black; it is a half parabola on a semi
plot!. This is not surprising, given our results for the veloc
correlations in Sec. III; the velocity correlations decay ve
rapidly with separation at high shear rates so that differ
bubbles are essentially uncorrelated with each other. Th
fore, the distribution is Gaussian, as it is in an equilibriu
liquid. At lower shear rates, where velocities of differe
bubbles are correlated, the distribution clearly develop
non-Gaussian tail. Our results suggest the following pictu
as the shear rate decreases, the scale of velocity fluctua
also decreases. However, once the flow becomes intermi

m

-
e

FIG. 14. Distribution ofy velocities,P(Dvy), at different shear
rates on a semilog plot. Here, the velocityDvy is scaled bydv, the
standard deviation of the distribution. A Gaussian distribution i

half-parabola and is shown in gray. At high shear rates (ġ>0.01),
the distribution is approximately Gaussian. At lower shear ra
however, the velocity distribution develops a much broader tail
3-10
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VELOCITY FLUCTUATIONS IN A STEADILY SHEARED . . . PHYSICAL REVIEW E67, 061503 ~2003!
(ġ,ġx), rearrangement events involving several bubb
lead to a non-Gaussian tail. At very low shear rates, the
tribution arises entirely from rearrangement events. The
servation of a non-Gaussian velocity distribution is the re
niscent of recent results for driven granular gases@29–32#,
although it is not clear for all geometries that granular ga
approach a Gaussian distribution at high driving rates.

The rest of this section is devoted to the nature of
distribution at low shear rates. It proves useful to Four
transform the velocity distribution:

P̃~k![
1

pE0

`

dDvyP~Dvy!cos~kDvy!. ~7!

We define the function

Q~k![2 ln P̃~k!. ~8!

WhenP(Dvy) is Gaussian, thenQ(k) is a straight line with
a slope of 2 on a log-log plot, with a prefactor ofdv2/2. The
functions Qup(k) and Qdn(k) are derived fromPup(Dvy)
andPdn(Dvy) through Eqs.~7! and ~8!. Figure 15~a! shows
Qup(k) vs k for several different shear rates. As expect
Qup(k) is a straight line with a slope of 2 at high shear rat
As ġ decreases below'0.01–0.05, however, we find tha
Qup(k) deviates away from a power law of 2 at highk. At
low k, however,Qup(k) is still approximatelysup

2 k2/2 for ġ

FIG. 15. Fourier transform of the velocity distribution, the fun
tion Q(k) as defined by Eq.~8!, for velocities collected while the

total elastic energy is increasing,Qup , and decreasing,Qdn . As ġ
decreases,Qup andQdn deviate from a power law ofk2 ~Gaussian
behavior! at smaller and smaller values ofk.
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>531024, and we can extract the coefficientsup . When a
similar procedure is carried out forQdn(k), it leads to simi-
lar results. The resulting values ofsup andsdn are plotted in
Fig. 16. Forġ>0.0120.05, both distributions are Gaussia
so Qup and Qdn are pure power laws with exponenta52
andsup5sdn . Below ġ'0.01, however,Qup andQdn both
deviate from the Gaussian behavior at highk, and the coef-
ficientssup andsdn obtained from fits toQup andQdn at low
k are no longer identical to each other. Figure 16 shows
sdn.sup at low shear rates. Note that we also find thatsup is
a power law inġ over the entire range of shear rates, with
exponent of'2/3, as shown by the dotted line. This is co
sistent with results on other driven athermal systems suc
granular media, where the magnitude of velocity fluctuatio
~e.g., the granular temperature! scales sublinearly with the
driving velocity @23–26#.

At shear rates below 531024, the low-k behavior is no
longer a power law with an exponent ofa52, so we can no
longer extractsup or sdn . It is possible that this is becaus
the statistics are poor at high velocities. This speculation
supported by the observation that the power-law behavio
low k disappears at even higher shear rates for shorter run
smaller systems. Although we cannot extractsup , we can
extrapolate the power-law behavior shown in Fig. 16 to sh
rates below 531024. Then, if we define Q̄up(k)
[Qup(k)/sup

2 at all shear rates, we see that the low-k behav-
ior is independent of the shear rate, as shown in Fig. 17. T
plot suggests that asġ decreases belowġ50.01, the high-k
behavior ofQ̄up(k) crosses over to a smaller power law. Th
plot also suggests that fork less than some value, sayklow ,
Qup scales ask2 ~Gaussian behavior!, but that the value of
klow decreases with decreasing shear rate.

Figure 18~a! shows Qup(k) together with speculative
asymptotic fits to the high-k and the low-k behavior. The
high-k asymptotic curve corresponds to a power law w
a51 ~Cauchy distribution! and the low-k asymptotic curve
corresponds to a power law witha52 ~Gaussian distribu-
tion!, obtained by extrapolating the power-law fit tosup
shown in Fig. 16. The same Cauchy and Gaussian distr

FIG. 16. Coefficients of k2 at low k for Qup(k) ~triangles! and
Qdn(k) ~circles!. The straight line is a fit ofsup to a power law of
0.67.
3-11



ut
se

n
p

tri-
ior
ng
the
le
la-

a
ent
t

at
-

re-
sing.

ar

ig.

tis-
ics
g

r-

ear-
the
ing.
is

ents
tri-

t is
me
the

rgy

e-
de-

tal
ent

nt
he

nd

ONO et al. PHYSICAL REVIEW E 67, 061503 ~2003!
tions are shown in real~velocity! space in Fig. 18~b! together
with the distributionPup(Dvy). The distribution follows a
Cauchy distribution fairly well at small velocities, but is c
off at high velocities. It is possible that the system cros
over to a pure Cauchy distribution in the limitġ→0, and
that the cutoff at lowk gets squeezed down tok50. Another
possibility is that the Fourier transform of the distributio
approaches a pure power law with a somewhat higher ex

FIG. 17. Fourier transform of the velocity distribution,Qup(k),
scaled to collapse at lowk, where Qup(k) is proportional tok2

~Gaussian behavior!.

FIG. 18. ~a! Fourier transform of velocity distribution,Qup , at a

shear rate ofġ51025, along with fits to the limiting low-k behav-
ior ~Gaussian!, obtained by extrapolating the curve in Fig. 16, a
to the high-k limiting behavior ~Cauchy distribution!. The corre-
sponding velocity distribution is shown in~b!, together with the
same Gaussian and Cauchy fits in velocity space.
06150
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nent ~we find that 1.1 provides a better fit!. A distribution
with Q(k) given by a pure power law with an exponenta
,2 is known as a Levy distribution~the Cauchy distribution
is a special case of the Levy distribution, witha51) @41#.
Despite our results, which are consistent with a Levy dis
bution, we suspect that this is not the final limiting behav
at vanishing shear rate. A Levy distribution has divergi
moments. We speculate that there is an intrinsic cutoff to
divergence set by a typical maximum velocity of a bubb
during a rearrangement event, which is roughly the corre
tion length for velocity fluctuations,j̄, divided by the corre-
lation time t. Physically, this velocity scale is roughly
bubble diameter divided by the duration of a rearrangem
event. In our units, the system size isL[1, the time scale se
by the spring constant and the friction coefficient ist[1,
and the characteristic velocityj̄/ t̄ is vmax'0.01. This is the
upper end of the velocity fluctuations that we can observe
low shear rates~see Fig. 11!, given our computational re
sources.

In general, one would expect higher velocities during
arrangement events when the elastic energy is decrea
Therefore, one would expect the distributionPdn(Dvy) to be
broader thanPup(Dvy). This is indeed the case at low she
rates, as shown by Fig. 19~a! for ġ51025. The arrows mark
the values ofsup andsdn obtained from the low-k behavior
of Qup and Qdn . These parameters are also plotted in F
16, which shows thatsup decreases relative tosdn with de-
creasing shear rate. The statistics are not as good forsdn as
for sup at low shear rates, but the discrepancy betweensdn
andsup cannot be accounted for by the difference in sta
tics. We believe that the difference reflects the true dynam
of the system:sdn contains large velocities that occur durin
rearrangement events, whilesup does not. We have not cha
acterized the distributionPdn further; its Fourier transform
Qdn does not appear to obey a power law at highk, as shown
in Fig. 15~b!, although it may approach a power law of'0.5
at highk and low ġ.

Note thatsup5sdn for shear ratesġ>0.01. We also find
that Pup5Pdn in this regime, as shown in Fig. 19~b!. This is
not surprising; at high shear rates, all the bubbles keep r
ranging all the time, so there is no distinction between
bubble motion when the energy is decreasing and increas
It is only at lower shear rates when the bubble motion
punctuated by well-separated, intermittent rearrangem
that there is a significant difference between the two dis
butions.

We note that during a large rearrangement event, i
possible for the energy to increase slightly for a short ti
even though there is an overall drop in the energy over
period of the entire event. The motion during the ene
increase would be captured inPup . The original purpose of
sorting the velocity fluctuations into two distributions, d
pending on whether the total energy was increasing or
creasing, was to isolate rearrangement events intoPdn .
However, this picture is a simplistic one because the to
energy might be increasing even during a rearrangem
event. Thus,Pup must still contain some rearrangeme
events. Even though the original motivation for breaking t
3-12



an

r
rg
g

u

e

d

t

nt
uc
c-

ns

from
that
the
uld

eds
be
a-
a-

ly
ibu-
ly
u-

of
red
an-
e
ity

t
s,
ear
f
.

s by

ter
w
ntire
that
ar.

n

a

te

s,
e

VELOCITY FLUCTUATIONS IN A STEADILY SHEARED . . . PHYSICAL REVIEW E67, 061503 ~2003!
distribution into two parts appears to be naive, there is
other reason to studyPup . Recall from Fig. 1~b! that the
average duration of energy drops decreases as a powe
with shear rate relative to the average duration of ene
rises. This implies that the energy is decreasing only durin

vanishing fraction of the time asġ→0. As a result, the full
distribution approachesPup in the limit of vanishing shear

rate @P(Dvy)→Pup(Dvy) as ġ→0].
We have also collected the velocity fluctuation distrib

tion in thex direction~the shear velocity direction!, P(Dvx).
The behavior ofP(Dvx) is qualitatively the same as th

behavior ofP(Dvy) described above. At low shear ratesġ
<0.01, the two distributionsP(Dvx) andP(Dvy) are iden-

tical. For ġ>0.01, P(Dvx) is Gaussian, but with a standar
deviationsx that is slightly greater thansy , as shown in Fig.
20. This could be due to the tendency of the bubbles
organize into strings at high shear rates, as evidenced
movies of the simulations. Once the particles organize i
strings moving in the shear direction, one would expect fl
tuations in they direction to be suppressed relative to flu
tuations in thex direction.

FIG. 19. The velocity distributions collected when the total e
ergy is increasing (Pup) and decreasing (Pdn), respectively. The
arrows mark the coefficientssup and sdn of k2 obtained by fitting
Qup and Qdn , respectively, at lowk. These coefficients provide
measure of the width of the distributions.~a! The distributions at a

low shear rate ofġ51025. ~b! The distributions at a high shear ra

of ġ51022.
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V. DISCUSSION

We have shown that the character of velocity fluctuatio

changes markedly at a crossover shear rateġx . We have
argued that these changes arise from the crossover
smooth flow to intermittent rearrangement events, and
rearrangement events completely control the behavior in
zero shear rate limit. Based on this argument, one wo

expect ġx5gy /td , wheregy'0.01 is the yield strain and
td51 is the duration of a rearrangement event~in our units!.
Abovegy /td , the duration of a rearrangement event exce
the time between rearrangements, so the flow should
smooth. Belowgy /td , the rearrangement events are sep
rated in time. This prediction agrees well with our observ

tions. Aboveġx , the velocity fluctuations are exponential
correlated in space and time, and follow a Gaussian distr
tion. Below ġx , the velocity fluctuations decay more slow
than exponentially in space and time, and follow a distrib
tion that is broader than Gaussian.

In addition to qualitative observations of the shapes
distributions and correlation functions, we have gathe
considerable quantitative information on how various qu
tities depend on the shear rate. These quantities includte
and je , the time and length scales over which the veloc
correlations decay to 1/e2 of their original value att50 and
r 50 @Figs. 4~c! and 5~c!#, as well as the diffusion coefficien
D ~Fig. 9! and the standard deviation of velocity fluctuation
dv ~Fig. 2!. In previous studies, we have obtained the sh
stresssxy , the elastic energyE, and the standard deviation o
elastic energy fluctuations,dE, as a function of shear rate
We first note that the behavior ofje is trivial, in which je is
always approximately the bubble diameter, and increase
only a factor of 2 or so over the entire range~four decades!
of shear rate. We will therefore consider the bubble diame
d to be the only important length scale. We will now sho
that the measured quantities are tied together over the e
range of shear rates through a few simple relationships
yield insight into the nature of foam dynamics under she

-

FIG. 20. Velocity distributionsP(Dvx) andP(Dvy) of fluctua-
tions in thex and y directions, respectively. At high shear rate
these are not quite the same; the distribution is broader in thx
direction.
3-13
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A. Stokes-Einstein relation

The behavior of the self-diffusion coefficient of a bubb
in the transverse directionDy is shown as a function of shea

rate in Fig. 9. Note thatDy increases withġ. This is in
accord with our expectations: the diffusion coefficient aris
from the jostling of bubbles under shear flow, so it shou

increase withġ and vanish in the limitġ→0. Figure 9
shows that the behavior ofDy is not a simple power law in

ġ. To gain insight into the dependence ofDy on shear rate,
we have measured the viscosity of the shear-thinning fo

h(ġ), and the fluctuations in the elastic energy of t
bubbles,dE2[^(DE)2&. The latter quantity increases wit
shear rate because there are more overlaps between bu
We find that

D5C
dE

hd
, ~9!

whered is the average bubble radius andC50.0215. Both
sides of the above equation are plotted as a function of s
rate in Fig. 21. The expression in Eq.~9! has the same form
as the Stokes-Einstein equation for thermal particles, w
dE instead of the thermal energykT. This suggests that fluc
tuations in the elastic energy give the bubbles random k
that cause them to diffuse. In other words, diffusion in o
driven athermal system resembles diffusion in a thermal s
tem with an effective temperature given by the scale of
tential energy fluctuations. In another paper, we have m
sured effective temperatures based on various lin
response relations, and have shown thatD5C8Teff /hd @12#.
Thus, the scale of energy fluctuations sets the scale of
effective temperature.

FIG. 21. The Stokes-Einstein relation. The open circles rep
sent the diffusion coefficient calculated from they displacement
distribution. The triangles represent the standard deviation of
elastic energy,dE, divided by the viscosity and average bubb
diameter, up to a constant coefficient of 0.053. The excellent ag
ment between the circles and triangles shows that the Sto
Einstein relation is obeyed with an effective temperature prop
tional to dE.
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B. Power balance

In a steady-state sheared system, all the power supplie
the system must be dissipated. This provides a scaling r
tion between the shear stress and the velocity fluctuatio
The power supplied by the external driving force is given
sxyġA, wheresxyġ is the power supplied per unit area an
A is the area of the system. The power dissipated by the fl
arises from the velocity difference between the bubble vel
ity and the average velocity due to the shear flow at
position of the bubble. The typical force between neighb
ing bubbles isbdv, whereb[1 is the friction coefficient in
the model anddv is the characteristic velocity fluctuatio
~the standard deviation of velocity fluctuation distribution!.
The power dissipated is the dot product of the force and
velocity, so it isbdv2 for each bubble, orNbdv2 altogether.
Thus, we have the relation

sxyġA5Nbdv2. ~10!

We have verified that this relation does indeed hold for o
system by plotting the left and right hand sides of Eq.~10! as
a function of shear rate in Fig. 22. The agreement is ex
lent.

C. Final remarks

This study highlights the importance of the crossov
shear rateġx5gy /td , the yield strain divided by the dura
tion of a rearrangement event. A number of quantities h
been shown previously to exhibit a crossover atġx within the
model. We have compiled all the quantities into Table I.
each case, deviations from the high shear rate behavior
pear at shear rates of 0.01 or 0.02, and the limiting low sh
rate behavior is reached aroundġ51023. It is important to
recognize that although there appears to be a change o
havior atġx , the crossover shear rate is not necessarily w
defined. The value of the yield straingy depends on the time
scale on which the stress is measured. Thus, there is s
ambiguity inġx , similar to the ambiguity that arises in stud
ies of the glass transition.

-

e

e-
s-

r-

FIG. 22. The magnitude of velocity fluctuations is set by t
power supplied to the system. The power supplied by the sh
~triangles! is dissipated by velocity fluctuations~circles!.
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TABLE I. Quantities that exhibit a change of behavior aroundġx according to simulations on the Duria
model. The numbers following each quantity indicate the reference in which the behavior was discus

Quantity Behavior aboveġx Behavior belowġx

Energy@8,9# Increases withġ Approximately independent ofġ
Shear stress@8,9# Increases withġ Approximately independent ofġ
Teff @11,12# Increases withġ Approximately independent ofġ
Avalanche distributions@10# Depend onġ Approximately independent ofġ
Rearrangement event rates@10# Depend onġ Approximately independent ofġ
Viscosity @11# Arrhenius inTe f f Super-Arrhenius inTe f f

Velocity distribution Gaussian Broader than Gaussian
C(t) @see Eq.~1!# Exponential decay Slower-than-exponential decay
F(r ) @see Eq.~1!# Exponential decay Slower-than-exponential decay
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Experiments on both foams@21,33# and emulsions@6#
show a crossover in the behavior of the shear stress, sim
to that seen in simulations@8,9#, where the shear stress d
creases with decreasingġ down to ġx and then levels off.
Measurements on a commercial shaving cream@5,16,21# and
on bubble rafts@33# show that the stress exhibits a crossov
in shear rate dependence from one power law to another
a characteristic shear rate ofġx50.1 s21. Below this shear
rate, rearrangement events in a three-dimensional foam
be resolved using diffusing-wave spectroscopy; aboveġx ,
the flow appears to be affine@5,16#. The response to a ste
strain imposed on top of the steady shear also changes
shear rate@21#: the instantaneous shear modulus is z
aboveġx and nonzero below. Finally, there is a qualitati
change in the nature of fingering patterns observed when
is pumped into a foam@34#. For shear rates aboveġx , the
fingering pattern is smooth and viscous in character, w
for shear rates belowġx , it is jagged and elastic.

In simulations of model glassforming liquids such
Lennard-Jones mixtures, a similar crossover is observed
function of temperature: dynamical correlation functions ar
exponential above a characteristic temperatureTx and
stretched exponential belowTx , the viscosity is Arrhenius
aboveTx and super-Arrhenius belowTx @37,38#, the poten-
tial energy of inherent structures is constant aboveTx and
decreases withT below Tx @35,36#, kinetic heterogeneities
appear belowTx @38,39#, and translational diffusion, relax
ation, and rotational diffusion become decoupled belowTx
@38,39#.

The resemblance of behavior near the crossover strain
ġx to behavior near the crossover temperature in superco
liquids, Tx , raises the question of whether sheared syste
can be described as thermal ones. A number of driven
ticulate systems, such as shaken granular materials@32,40#,
sedimenting colloids@42#, and gas-fluidized particles@43#
show surprisingly a thermal behavior. In some ways, veloc
fluctuations in the system studied here are profoundly dif
ent from velocity fluctuations in an equilibrium, therma
Hamiltonian system. In our system, there are nontrivial s
tial correlations of the velocity; in an equilibrium system
these would vanish due to separation of position and mom
06150
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tum terms in the Hamiltonian. In our system, the veloc
distribution is definitely not Gaussian at shear rates be

ġx ; in a thermal system, the distribution is always Gauss
because the Hamiltonian is always quadratic in moment
Nonetheless, there are some important and striking way
which the behavior of our system is similar to that of a th
mal system. The self-diffusion coefficient in the directio
transverse to shearDy satisfies a Stokes-Einstein relatio
with the thermal energykT replaced by the characteristi
potential energy fluctuationdE. Moreover, we have found
that the idea of an effective temperature is useful; definitio
of temperature calculated from different linear-response r
tions yield the same result@12#.

When might the idea of an effective temperature be u
ful? We have proposed a criterion@12# based on the
fluctuation-dissipation relation. In an equilibrium system, t
amount of dissipation in the system is controlled by the a
plitude of fluctuations. In a driven dissipative system, we c
turn this around and ask whether the amount of dissipa
controls the amplitude of fluctuations. We can answer this
studying the power dissipated by the system. In steady s
the power supplied to the system must be balanced, on
average, by the power dissipated. The power can be d
pated in two ways—by the average flow and by fluctuatio
around the average flow. If nearly all the power supplied
the driving force is dissipated by fluctuations, then the a
plitude of fluctuations is controlled by the amount of dis
pation, and there is a fluctuation-dissipation relation. On
other hand, if not all the power is dissipated by fluctuatio
then the fluctuations are smaller than that allowed by
amount of dissipation and the relation breaks down. Th
we speculated@12# that the concept of effective temperatu
is useful only if nearly all the power supplied by the drivin
force is dissipated by fluctuations. In this paper, we ha
shown that the width of the velocity distribution,dv, in-
creases less rapidly than the shear rate~see Fig. 2!. In par-
ticular, we finddv;(ġd)b, whereb'0.6. A similar sublin-
ear scaling occurs in systems other than foams. In gran
materials, a similar sublinear scaling of the velocity fluctu
tions ~the granular temperature! with respect to the averag
flow was observed in hopper flows@23#, surface flows@24#,
and shear flows@30,26# with similar
3-15
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exponents~ranging from 0.5 to 0.7!.
The sublinear scaling is important because it suggests

at high flow rates, fluctuations become negligible relative
the average flow and the idea of an effective tempera
should fail. This may seem surprising, given our results
the velocity distributions, which become Gaussian at h
shear rates and therefore appear more ‘‘thermal.’’ It is imp
tant to recall, however, that the particles in our simulatio
are massless, so the implications of the velocity distribut
for an effective temperature are not clear.

Conversely, the sublinear scaling of velocity fluctuatio
with average velocity implies that in the limit of zero flow
the fluctuations diverge relative to the average flow. T
implies stick-slip behavior, which is a hallmark of near
rie
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jammed systems. Thus, our arguments suggest that the
cept of effective temperature should be most useful for s
tems near the onset of jamming.
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